
PHYSICAL REVIEW E 66, 061107 ~2002!
Ground state and thermal properties of a lattice gas on a cylindrical surface
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Adsorbed gases within, or outside of, carbon nanotubes may be analyzed with an approximate model of
adsorption on lattice sites situated on a cylindrical surface. Using this model, the ground state energies of
alternative lattice structures are calculated, assuming Lennard-Jones pair interactions between the particles.
The resulting energy and equilibrium structure are nonanalytic functions of radius~R! because of commensu-
ration effects associated with the cylindrical geometry. Specifically, asR varies, structural transitions occur
between configurations differing in the ‘‘ring number,’’ defined as the number of atoms located at a common
value of the longitudinal coordinate (z). The thermodynamic behavior of this system is evaluated at finite
temperatures, using a Hamiltonian with nearest-neighbor interactions. The resulting specific heat bears a
qualitative resemblance to that of the one-dimensional Ising model.

DOI: 10.1103/PhysRevE.66.061107 PACS number~s!: 68.60.2p, 64.70.2p, 68.43.2h, 67.70.1n
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I. INTRODUCTION

Atoms or molecules may be confined either within, or
the outside surface of, cylindrical materials, such as car
nanotubes. The existence of such systems raises a set
teresting questions concerning the thermal, structural,
dynamical properties of a cylindrical monolayer film. In th
paper, we evaluate the thermal and structural propertie
such a film, with the help of two simplified models. W
believe that some of our results are realistic, although oth
may be artifacts of the model@1,2#. For example, Fig. 1,
taken from a previous work@2#, depicts the density of H2
molecules within a nanotube of radiusR57 Å, at tempera-
ture T510 K. Note that the radial spread of the so-call
‘‘cylindrical shell’’ phase is some 10% of the mean rad
distance^r &'3.8 Å. In such a situation, the model of con
finement to a precise value ofR would seem appropriate.

The first task we undertake is to ascertain the ground s
energy and structure of an ensemble of atoms, assumed
classical, that interact with all other atoms with a Lenna
Jones~LJ! pair potential:U(r )54e@(s/r )122(s/r )6#. Here
s is the nominal diameter of the atoms ande is the well
depth of their mutual interaction. We assume, without pro
that the equilibrium structure is a periodic crystal. To det
mine its properties, we minimize the ground state energy
particle in this cylindrical surface lattice. In so doing, w
consider possible periodic structures and determine
structure which has the lowest energy at any specified v
of R. The second problem is to evaluate the thermal prop
ties of such a ‘‘lattice gas’’ which has varying fractional si
occupancyu. In this case, we simplify the problem by in
cluding just nearest-neighbor interactions.

The behavior of the system can be expressed in terms
reduced radiusR* 5R/s. Both the ground state and finit
temperature ~T! problems have much-studied on
dimensional~1D! and 2D limits, corresponding toR* 50
and`, respectively. Interestingly, the behavior does not
terpolate smoothly between these limits asR* is varied. This
happens because@3# of a commensuration effect arising from
1063-651X/2002/66~6!/061107~7!/$20.00 66 0611
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the periodicity associated with the azimuthal anglef. This
phenomenon is analogous to that found in monolayer film
the regime where the film’s lattice constant is similar to th
of the substrate@4#. In the cylindrical case, the circumferenc
of the cylinder provides the length scale that determines
compatibility of candidate structures. While there have be
many studies of adsorption within nanotubes@5#, we believe
that this represents the first detailed exploration of the pr
lem of the radius dependence of the low-temperature ther
dynamic properties of films adsorbed in the inner wall~cy-
lindrical shell! phase. As such, our predictions of therm
properties, will be relevant to future experimental studies

In the following section, we evaluate the ground sta
problem by considering a rather general set of alterna
structures. In Sec. III, we compute the specific heat for s

FIG. 1. Reduced densityr* 5rs3 of H2 molecules atT
510 K as a function of radial distance inside a nanotube of rad
7 Å for several values of the chemical potentialm ~taken from
Ref. @2#!.
©2002 The American Physical Society07-1
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CALBI et al. PHYSICAL REVIEW E 66, 061107 ~2002!
eral values of the ring number. Finally, in Sec. IV we es
mate the quantum effects~by including zero-point energy!
present in a rather extreme case,4He atoms on a cylindrica
surface, and compare the resulting energy with the kno
energy.

II. GROUND STATE ENERGY

We assume that the ground state structure is close pac
as exemplified in Fig. 2, and that it can be derived with
following algorithm. At any specific value, say zero, of th
coordinate~z! parallel to the cylinder’s axis, there aren at-
oms, distributed uniformly in azimuthal anglef. We call n
the ring number of the structure and consider structures w
integral value ofn. Figure 2 depicts the casen54, which
turns out to be an important example. A unit cell of th
structure consists of four atoms atz50 ~at azimuthal angles
f50, p/2, p, and 3p/2) and four atoms atz5a (f
5p/4, 3p/4, 5p/4, and 7p/4). The structure is characte
ized by a one-dimensional densityr54/a, since there are
eight atoms in a unit cell of length 2a. For each such hypo
thetical structure, we have performed two calculations. T
first is a total energy calculation, aimed at determining
lowest energy structure. The energy in this case is take
the sum of two-body LJ interactions between atoms at
lattice sites. The second study yields the thermodyna
properties, described in the following section.

Before embarking on these calculations, we assess
models. The only approximations in the ground state ca
lation are the use of Lennard-Jones potentials, the omis
of kinetic energy, and the assumption that the actual struc
fits the close-packing description. The first two are conv
tional approximations in the lattice gas approach. We n
only that many-body corrections may be important in t
geometry~but we ignore them! @6#. The third assumption
seems logical, since all simple close-packed lattice struct
are included. One can imagine other possibilities, such
one in which the unit cell consists of more than two ring
but these seem implausible to us. We note that the prob
of packing on a spherical surface is quite different from t
on a cylinder; there, frustration arises because of the d
culty of satisfying local packing requirements@7,8#. Here,
instead, we find many high density, strongly bound, a
nearly degenerate low-energy structures, which do satisfy
cal bonding requirements.

We have obtained the~ground state! energy results from
the following procedure. For any assumed values of the r
number and cylinder radius, the energyEn(a,R) is evaluated
by summing contributions from all interatomic interaction

FIG. 2. Schematic depiction of the cylindrical lattice structu
having ring numbern54. The lattice constant is 2a.
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En~a,R!5(
i , j

U~r i j !. ~1!

Here, the sum includes all pairs of atoms, separated b
3D distancer i j . It is convenient to measure distances
units of the hard core parameter, to permit scaling betw
different solutions. Thus,R* anda* 5a/s are reduced dis-
tance variables; similarlyE* 5E/e is a reduced energy. As
an example (n54) revealing the energy’s dependence
these lengths, a contour plot of the functionE4(a* ,R* ) is
shown in Fig. 3. Note that this function possesses two lo
minima; these correspond to two quite distinct geometr
The minimum with the larger value ofa* ~smaller value of
R* ) corresponds to neighbors within the same ring that
separated byDr'r min ~the equilibrium distance of the pai
potential!. The other minimum energy configuration~larger
value of R* ) involves nearest neighbors in adjacent ring
separated byDr'r min @9#. While, in either case, the low
energy of the structure comes primarily from such optimiz
tion of nearest-neighbor distances, longer range interact
do play a significant role in determining the total energ
This is evident from the fact that the~reduced! cohesive en-
ergy per particle has a maximum value as high as 3.62
n54. This is 45% greater than the value~5/2 for n54) that
would result if only nearest-neighbor interactions were
cluded.

For each pair of values ofn andR, one thus determines
unique valueamin* for which this energy function is a globa
minimum. This optimized value ofamin* appears in the lower
panel of Fig. 4 and the corresponding energy appears in
upper panel. In the latter, one observes two alternative
haviors: either a single value ofR yields a minimum in this
function ~for n51 or 2! or two values yield local minima
~for n.2). In the latter case, with the single exception
n53, the lower energy structure is the one with the sma
value ofR, i.e., the case with nearest neighbors in the sa
ring.

FIG. 3. The energy per particleEn(a* ,R* )/(Ne) is shown for
the casen54, as a function of the ring separationa* 5a/s and
radiusR* 5R/s.
7-2
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GROUND STATE AND THERMAL PROPERTIES OF A . . . PHYSICAL REVIEW E66, 061107 ~2002!
By such an analysis, we derive the ground state ene
shown in Fig. 5, representing the global lower bound of
ensemble of curves in Fig. 4. This scallop-shell-like functi
manifests the following plausible behavior. For very sm
R* , the lowest solution corresponds to the casen51. Near
R* 50.5, the lowest energy shifts to then52 structure; this
is a plausible result because then two atoms may occupy
same ring without significant hard core repulsion. For
creasingR, the minimum energy and structure undergo
sequence of transitions between different values ofn. Inter-
estingly, the sequence is not monotonic: after a very nar
region (0.60,R* ,0.63) in whichn53 is optimal, there oc-
curs a region (0.63,R* ,0.73) in whichn52 is optimal,

FIG. 4. Upper panel shows the energy per particle~in units of
the pair potential’s well depth! as a function of reduced radius, fo
various assumed ring numbers,n51, 2, 3, 4, 5, 6, and 8, from lef
to right. Each value ofE is derived by choosing the optimize
lattice constant (amin), shown in the lower panel. The oddn curves
are dashed andn51, 2, 6, and 8 are labeled.

FIG. 5. Energy as a function of radius, obtained by selecting
minimum energy from the solutions in Fig. 4. The global minimu
energy for this problem occurs atR* 50.78 (n54), as indicated by
the arrow.
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followed by an extended region (0.73,R* ,0.87) in which
n54 provides the lowest energy. Note that there are m
energy minima close to the~reduced! energy E/(Ne)5
23.6. The global minimum energy structure occurs atR*
50.78, with reduced energy23.62 ~the minimum nearR*
50.67 has energy23.61 and that nearR* 50.95 has energy
23.60). At that point, there are two neighbors at reduc
distance 1.10 and four at distance 1.11, both of which
very close to the pair potential minimum value,r min* '1.12.
This most cohesive configuration corresponds to a cohe
energy some 7% higher than the two-dimensional grou
state energy~3.38! of the L J potential~corresponding to a
hexagonal packing! @10#. This result implies that if atoms
were to self-assemble on a surface of any shape, the c
drical surface would be stable relative to the planar surfa
While we have not performed the corresponding calculat
for atoms on a spherical surface, we suspect that the en
in that case would be competitive with the present res
@11#. Based on experience found in the case of a Coulo
interaction@7,8#, we expect that frustration due to many e
ergetically similar structures would be likely to occur in th
spherical case. We note, for completeness, that the red
cohesive energy in 1D is slightly greater than 1~1.03!, while
in 3D the value is quite large~8.1!, a result of both the highe
coordination possible in 3D and the large contribution
long range forces.

A structure of the type we are studying will sustain sou
waves with various polarizations. The simplest such wav
a longitudinal compressional wave, with propagation vec
parallel to the cylinder’s axis. In the long wavelength lim
the corresponding sound speed for the case of massM par-
ticles will satisfy

Ms25a2S ]2~E/N!

]a2 D
R

. ~2!

Here the derivative is evaluated at the ground state confi
ration for any R. Figure 6 shows corresponding energ
curves from which the derivatives in Eq.~2! may be com-

e

FIG. 6. Energy as a function ofa* for various values ofR* in
the casen54, see Fig. 3. The curve corresponding toR* 50.78
yields the global energy minimum of the problem.
7-3
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CALBI et al. PHYSICAL REVIEW E 66, 061107 ~2002!
puted. For the curves shown, the reduced sound speedMs2/e
has the values 86, 37, and 91 atR* 50.78, 1.05, and 1.25
~the three lowest energy minima in Fig. 6!, respectively. In
the case of a mass 16 particle (CH4), these values corre
spond tos'3 km/s, comparable to the bulk speed of sou
of CH4. The very high value is indicative of a very tightl
bound and rigid structure.

III. THERMODYNAMICS

There exists a venerable tradition of applying the~Ising!
lattice gas model to describe the condensation of gases.
critical exponents of the liquid-vapor transition are believ
to be exactly determined with this model. As is common
such applications, we simplify our calculations by assum
that only nearest neighbors interact and these interaction
have the same energy (2J). While J might simply be set
equal to the well depth of the pair potential, a more soph
ticated model might increase the value ofJ to incorporate
attractive, longer range interactions in some approximat
The preceding section’s results for the energy would sug
that an increase ofJ/e by a factor;1.5 is needed to derive
the ground state’s energy. However, at a density less
complete filling of sites, the occupation fraction would r
duce this hypothetical long range correction significantly.
course, accurate calculations~not undertaken here! would in-
corporate longer range interactions explicitly in the Ham
tonian itself.

Our method of study is the explicit evaluation of the pa
tition function, within the canonical ensemble. For the ca
whenN sites are occupied at temperatureT, this function is

FIG. 7. Energy~lower panel! and specific heat~upper panel! for
the case of ring numbern52, Ns516 ~eight rings!. The full curve
corresponds to half filling occupancy (u58/16), the dotted curve to
u57/16, the dashed one tou59/16, and the dot-dashed one tou
513/16.
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Here,k is the Boltzmann’s constant, the sum is over all co
figurations$ni% that yield a total ofN particles~out of Ns
sites!, andE$ni% is the corresponding energy. Each config
ration corresponds to a specific choice of occupied sites.
riodic boundary conditions are employed, so that the ri
end sites of a periodic region interact with ‘‘neighboring
left end sites of that region. A typical calculation involves
configuration determined by the occupancy of the 6n sites
contained within three unit cells of the lattice. We explore t
accuracy of this procedure by varying the size of the perio
cell. Because there is no transition in this 1D system,
finite size effects do not attenuate any divergence in the s
cific heat, but they are observable. Checks on the res
come from the known ground state energy and the higT
energy, obtained from a random site occupancy,

E/~NJ!52
g

2

N

Ns
52

g

2
u. ~4!

Here g is the coordination number andu is the occupied
fraction of sites. Another check comes from the entro
S(T), which is obtained by integrating the heat capac
divided by T, from zero to infinity, whereS5 ln$Ns!/@N!(Ns
2N)!#%. Note thatS/Ns52u ln u2(12u)ln(12u), i.e., ln 2
at 50% occupancy.

Figures 7–9 show the energy and specific heat as fu
tions of the reduced temperatureT* 5kT/J for the casesn

FIG. 8. Energy~lower panel! and specific heat~upper panel! for
the case of ring numbern53, Ns518 ~six rings!. The full curve
corresponds to half filling occupancy (u59/18), the dotted curve to
u58/18, the dashed one tou510/18, and the dot-dashed one
u515/18.
7-4
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GROUND STATE AND THERMAL PROPERTIES OF A . . . PHYSICAL REVIEW E66, 061107 ~2002!
52, 3, and 4, respectively. We make a number of rema
about the results. First, the curves are all qualitatively si
lar; this is not surprising because none of these finiten cases
exhibits a phase transition. Hence, all of the interesting
havior is concentrated in the regime near and belowT*
51. The key qualitative dependence is a concentration, w
increasingn of the thermal ‘‘activity’’ into a progressively
narrower region ofT. This trend is plausible because th
limit of very largen is the~triangular lattice! 2D limit, which
exhibits a genuine phase transition, with critical temperat
Tc* '0.91.

Size effects are present in our calculations and may
occur in nature, where nanotubes are finite or may have fi
segments that are perfectly ordered. To explore these eff
we focus on the casen53. Figure 10 shows how the groun
state energy~inset in left panel!, at u51/2, depends onNs ,
the number of sites in the unit cell, while the highT result
remains fixed atE/(NJ)523/2, the exact result at highT
arising from the 50% site occupancy. The dependence onNs
for u51/2 conforms to the expressionE(T50)/(2NJ)53
212/Ns , derived from the bulk and surface energies o
ground state ‘‘island’’ consisting ofNs/6 isolated rings.
Hence, the largest system shown (Ns530) has a ground stat
energy differing from the infinite system result by a fracti
4/30'0.14. The specific heat bump moves to progressiv
higherT asNs increases; it is seen to be converging to a w
defined limit at that point, with a maximum nearT* 50.89,
as is expected from the limiting behavior described abov

One particularly interesting feature is the presence o
double maximum in the specific heat at fractional occu
tionsu both near, but not equal to, 1/2~Fig. 10, right panel!.

FIG. 9. Energy~lower panel! and specific heat for the case o
ring numbern54, Ns516 ~four rings!. The full curve corresponds
to half filling occupancy (u58/16), the dotted curve tou57/16,
the dashed one tou59/16, and the dot-dashed one tou513/16.
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Note that this behavior becomes increasingly evident as
system size grows, indicating that it is not a finite size a
fact. To explore this phenomenon, we compute two corre
tion functions, defined in the following way. The transver
correlation function is obtained from the average of the pr
uct of the occupation numbers of the three sites in the sa
ring, and the longitudinal correlation function is the avera
of the product of the occupation numbers of three sites
consecutive rings.

These correlation functions are plotted in Fig. 11 in t
case ofn53, for the same occupations as in Fig. 8. O
observes drastically different behavior foru51/2 and u
Þ1/2. Foru51/2, there arises transverse correlation bel
T* 50.75, persisting down toT50, while the longitudinal
correlations remain low and constant for the whole range
temperature. The ground state includes completely fil
rings ~perfect transverse order! but the longitudinal order is
imperfect, e.g., because the islands have edges atu51/2.
Note that the peak in the specific heat appears at the s
temperature (T* '0.75) for which the transverse correlation
start to develop, indicating a quasitransition to a more

FIG. 10. Specific heat forn53, showing the size effect as th
number of sitesNs increases. The full curve depicts the case
Ns518 ~six rings!, the dashed curve corresponds toNs524 ~eight
rings!, and the dotted curve toNs530 ~ten rings!. The left panel
shows the case for half occupancy~the inset depicts the energy pe
particle! whereas the right panel corresponds to occupancy be
1/2: u50.44 ~full curve!, 0.42 ~dashed curve!, 0.43 ~dotted curve!.

FIG. 11. Transverse~full curves! and longitudinal ~dashed
curves! correlation functions~defined in the text! for the same oc-
cupancies as in Fig. 8 (n53).
7-5
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CALBI et al. PHYSICAL REVIEW E 66, 061107 ~2002!
dered state along the azimuthal direction.
How do we explain the second, lowT, bump in C foru

close to 1/2? We attribute it to development of the longi
dinal correlation at a lowerT since the rings are not all com
plete in this case. The upper panels of Fig. 11 (u58/18 and
10/18! show how the longitudinal correlation arises forT*
below 0.25, i.e., a much lowerT than where the transvers
order begins, giving rise to the corresponding lowT bump in
Fig. 8. Rings start to form atT* '0.75 and this ordering
leads to a longitudinal quasicondensation when these r
start to order along thez direction asT is lowered. When the
occupation is considerably larger that 1/2~for example, as
shown in the bottom right panel of Fig. 11, foru515/18),
the longitudinal order prevails because almost all the ri
are occupied and the lowT islands are bigger.

Based on the behavior of these two correlation functio
we can also explain the absence of two peaks in then52
and n54 cases. For half filling, the longitudinal order
always poor because the system tends to aggregate i
island and the peak in the specific heat corresponds to
development of the azimuthal order characteristic of t
structure. For occupancy much greater than 1/2, the sys
tries to condense along thez direction, which coincides with
the formation of a much bigger island and the specific h
peak indicates the appearence of this longitudinal or
However, because the energy difference between the tr
verse and longitudinally ordered structures is smaller tha
then53 case, for intermediate cases whenu is close to 1/2,
longitudinal and transverse ordering occur at nearly the s
T, resulting in a single peak in the specific heat.

IV. QUANTUM EFFECTS

The preceding discussion deals with the classical lat
problem, leaving open the question of quantum effects
one were to compute the rms fluctuations of atomic displa
ments due to zero-point motion, the~essentially! 1D phonon
states of this lattice would lead to a divergent result. Hen
no crystalline state is possible for our lattice, even atT50.

However, we wish to consider the implication of our r
sults for the case of a rather extreme quantum problem,
ground state of4He atoms confined to a cylindrical surfac
In this case, there is no ambiguity about the ground st
since it is surely a liquid, as in 3D. Our concern here is
quantitative one: what is the binding energy of this grou
state? We answer this question with an estimation met
similar to the one used by London more than half a cent
ago in describing4He in 3D @12#. The goal here is to se
whether the lattice model contains any physics relevan
the 4He case.

One estimate of the total energyEtot of the system is the
following:

Eest
(1)5^V&01Kest. ~5!

Here^V&0 is the ground state energy computed in Sec. II
a cylindrical lattice. The latter is a lower bound to the tr
potential energy of the quantum problem. Hence, the t
Eest

(1) is a lower bound if the kinetic energyKest were known
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to be less than, or equal to, the true kinetic energy of4He.
Unfortunately, we cannot establish such a relation with
carrying out a full calculation. Instead, we approximateKest,
following London, leading to a total energy estimate, inste
of a genuine bound. Our estimate of the kinetic energy
particle includes contributions from both azimuthal and lo
gitudinal motions for atoms within the lattice,

Kest/N5
\2

2m F S p

a D 2

1S n

RD 2G . ~6!

Figure 12 shows the results of this calculation, along w
several others. One of these is a variational calculation of
ground state energyEvar of liquid 4He on a cylindrical sur-
face, by Carraro@13#. While this latter is just an upper boun
to the exact energy, it probably comes within 0.2 K of t
exact energy. In comparing these curves, we note that b
the energy estimatesEest andEvar exhibit a common feature
there is a single total energy minimum in the vicinity
R* '0.7 to 0.8. We observe thatEest

(1) lies significantly below
Carraro’s results for all values ofR* . The large discrepancy
('15 K) is attributable, in our opinion, primarily to the ne
glect of the large increase in potential energy above the c
sical lattice energŷV&0. To analyze this, we make a drast
approximation: that the motion of the system is totally h
monic, i.e., a phonon description. In that case, the poten
energy increase above the value^V&0 is equal to the kinetic
energy per particle. This leads to a revised estimate of
energy,

Eest
(2)5^V&012Kest. ~7!

As seen in Fig. 12, the variational results lie midway b
tweenEest

(1) and Eest
(2) and the minima of these functions li

close to that of the variational calculations. This comparis
suggests that our model is getting the physics approxima
correct. However, one must bear in mind that a more co

FIG. 12. The ground state energy of4He atoms confined to a
cylindrical surface. The full curve shows the result of the variatio
calculationEvar by Carraro~Ref. @1#!. Also shown are two alterna
tive estimatesEest

(1) and Eest
(2) of the total energy obtained from th

classical potential energŷV&0 and estimated kinetic energy,Kest,
as described in the text.
7-6
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GROUND STATE AND THERMAL PROPERTIES OF A . . . PHYSICAL REVIEW E66, 061107 ~2002!
plete analysis would take into account the relaxation of
system to incorporate the kinetic energy. This would be
analog of allowing the liquid density to vary in searching f
the ground state, as is conventionally done in variational
culations ~and was done by London with his analogo
model!. The result of such an approach would be a reduct
in the density~as occurs for 3D4He and H2) and in the
magnitudes of all energies in the system. Such an exten
analysis seems unwarranted in view of the naivete´ of the
present description and the availability of alternative, m
accurate, computational methods.

Note added in proof. A qualitatively similar two-peak be-
havior of C(T) was recently found by Hodak and Girifalc
,
an
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in simulations of C60 molecules inside large~15,15! nano-
tubes. The lowT peak was attributed to breakup of the mo
ecules’ zigzag structure and the higherT peak to loss of
longitudinal order@14#.
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