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Ground state and thermal properties of a lattice gas on a cylindrical surface
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Adsorbed gases within, or outside of, carbon nanotubes may be analyzed with an approximate model of
adsorption on lattice sites situated on a cylindrical surface. Using this model, the ground state energies of
alternative lattice structures are calculated, assuming Lennard-Jones pair interactions between the particles.
The resulting energy and equilibrium structure are nonanalytic functions of réilsecause of commensu-
ration effects associated with the cylindrical geometry. SpecificallyR &sries, structural transitions occur
between configurations differing in the “ring number,” defined as the number of atoms located at a common
value of the longitudinal coordinatez). The thermodynamic behavior of this system is evaluated at finite
temperatures, using a Hamiltonian with nearest-neighbor interactions. The resulting specific heat bears a
qualitative resemblance to that of the one-dimensional Ising model.

DOI: 10.1103/PhysRevE.66.061107 PACS nun)er68.60—p, 64.70-p, 68.43-h, 67.70:+n

[. INTRODUCTION the periodicity associated with the azimuthal angleThis
phenomenon is analogous to that found in monolayer films in
Atoms or molecules may be confined either within, or onthe regime where the film’s lattice constant is similar to that
the outside surface of, cylindrical materials, such as carboof the substratf4]. In the cylindrical case, the circumference
nanotubes. The existence of such systems raises a set of iof the cylinder provides the length scale that determines the
teresting questions concerning the thermal, structural, andompatibility of candidate structures. While there have been
dynamical properties of a cylindrical monolayer film. In this many studies of adsorption within nanotut)g§ we believe
paper, we evaluate the thermal and structural properties dhat this represents the first detailed exploration of the prob-
such a film, with the help of two simplified models. We lem of the radius dependence of the low-temperature thermo-
believe that some of our results are realistic, although otherdynamic properties of films adsorbed in the inner wail-
may be artifacts of the modéll,2]. For example, Fig. 1, lindrical shel) phase. As such, our predictions of thermal
taken from a previous work?2], depicts the density of H  properties, will be relevant to future experimental studies.
molecules within a nanotube of radis=7 A, at tempera- In the following section, we evaluate the ground state
ture T=10 K. Note that the radial spread of the so-calledproblem by considering a rather general set of alternative
“cylindrical shell” phase is some 10% of the mean radial structures. In Sec. lll, we compute the specific heat for sev-
distance(r)~3.8 A. In such a situation, the model of con-
finement to a precise value & would seem appropriate. . . : .
The first task we undertake is to ascertain the ground stat 45 |

energy and structure of an ensemble of atoms, assumed to —— u=-419K
classical, that interact with all other atoms with a Lennard- | ==~ u=-354K
Jones(LJ) pair potential:U(r)=4¢[ (a/r)*2— (a/r)®]. Here 10 —To- p=-322K 1

o is the nominal diameter of the atoms aads the well
depth of their mutual interaction. We assume, without proofZ g | i
that the equilibrium structure is a periodic crystal. To deter-& T
mine its properties, we minimize the ground state energy pe%
particle in this cylindrical surface lattice. In so doing, we §
consider possible periodic structures and determine the$
structure which has the lowest energy at any specified valu
of R. The second problem is to evaluate the thermal proper
ties of such a “lattice gas” which has varying fractional site
occupancyé. In this case, we simplify the problem by in-
cluding just nearest-neighbor interactions.

The behavior of the system can be expressed in terms of
reduced radiuRR* =R/o. Both the ground state and finite
temperature (T) problems have much-studied one-
dimensional(1D) and 2D limits, corresponding t&* =0 FIG. 1. Reduced densitp* =po® of H, molecules atT
and«, respectively. Interestingly, the behavior does not in-=10 K as a function of radial distance inside a nanotube of radius
terpolate smoothly between these limitsRisis varied. This 7 A for several values of the chemical potentjal (taken from
happens becau$8] of a commensuration effect arising from Ref.[2]).

r(A)

1063-651X/2002/6@)/0611077)/$20.00 66 061107-1 ©2002 The American Physical Society



CALBI et al. PHYSICAL REVIEW E 66, 061107 (2002

2a 2.0

FIG. 2. Schematic depiction of the cylindrical lattice structure’s ]
having ring numbew=4. The lattice constant isa2

eral values of the ring number. Finally, in Sec. IV we esti-

mate the quantum effeci®y including zero-point energy 0.5
present in a rather extreme cadele atoms on a cylindrical
surface, and compare the resulting energy with the knowi . . . .
0.5 1.0 15 2.0 25 3.0
energy.
R*
II. GROUND STATE ENERGY FIG. 3. The energy per particE,(a* ,R*)/(Ne¢) is shown for

. the casev=4, as a function of the ring separatierf =a/o and
We assume that the ground state structure is close packedyisr* =R/«

as exemplified in Fig. 2, and that it can be derived with the

following algorithm. At any specific value, say zero, of the

coordinate(z) parallel to the cylinder’s axis, there areat- _ B

oms, distributed uniformly in azimuthal ange We call v E.(aR) .2<, uir;). @

the ring number of the structure and consider structures with

integral value ofv. Figure 2 depicts the case=4, which . i

turns out to be an important example. A unit cell of this _Here, the sum includes all pairs of atoms, separated by a

structure consists of four atomszt 0 (at azimuthal angles 3P distancer;; . It is convenient to measure distances in
=0, w2, =, and 37/2) and four atoms at=a (¢ units of the hard core parameter, to permit scaling between

= /4, 3ml4, 5m/4, and 7r/4). The structure is character- different solutions. ThusR* anda* =a/o are reduced dis-

ized by a one-dimensional densip=4/a, since there are tance variables; simiIarIE’_‘ =E/e is a reduced energy. As
eight atoms in a unit cell of lengtha2 For each such hypo- @0 example ¢=4) revealing the energy's dependence on
thetical structure, we have performed two calculations. Thdhese lengths, a contour plot of the functifip(a*,R*) is
first is a total energy calculation, aimed at determining theSNoWn in Fig. 3. Note that this function possesses two local
lowest energy structure. The energy in this case is taken d§NM&; 'these c.orrespond to two quite distinct geometries.
the sum of two-body LJ interactions between atoms at alll N® minimum with the larger value @f* (smaller value of
lattice sites. The second study yields the thermodynami&™) corresponds to neighbors within the same ring that are
properties, described in the following section. separated byAr~rp, (the equilibrium distance of the pair
Before embarking on these calculations, we assess trePtentia). The other minimum energy configuratigtarger
models. The only approximations in the ground state calcuvalue of R*) involves nearest neighbors in adjacent rings,
lation are the use of Lennard-Jones potentials, the omissiobeParated byAr=~r;, [9]. While, in either case, the low
of kinetic energy, and the assumption that the actual structur@nergy of the structure comes primarily from such optimiza-
fits the close-packing description. The first two are convenlion of nearest-neighbor distances, longer range interactions
tional approximations in the lattice gas approach. We notélo play a significant role in determining the total energy.
Only that many_body Corrections may be important in thiSThIS IS eV|der-]t fl’0m the faCt.that tlf(%duced C(_)heSIve en-
geometry(but we ignore themn[6]. The third assumption €rgy per particle has a maximum value as high as 3.62 for
seems logical, since all simple close-packed lattice structurek=4- This is 45% greater than the val(&2 for v=4) that
are included. One can imagine other possibilities, such awould result if only nearest-neighbor interactions were in-
one in which the unit cell consists of more than two rings,cluded.
but these seem implausible to us. We note that the problem For each pair of values of andR, one thus determines a
of packing on a spherical surface is quite different from thatunique valueay,;, for which this energy function is a global
on a cylinder; there, frustration arises because of the diffiminimum. This optimized value diy,;,, appears in the lower
culty of satisfying local packing requiremenitg,8]. Here, panel of Fig. 4 and the corresponding energy appears in the
instead, we find many high density, strongly bound, andupper panel. In the latter, one observes two alternative be-
nearly degenerate low-energy structures, which do satisfy ldhaviors: either a single value & yields a minimum in this
cal bonding requirements. function (for v=1 or 2 or two values vyield local minima
We have obtained théground statgenergy results from (for v>2). In the latter case, with the single exception of
the following procedure. For any assumed values of the ring'=3, the lower energy structure is the one with the smaller
number and cylinder radius, the eneigy(a,R) is evaluated value ofR, i.e., the case with nearest neighbors in the same
by summing contributions from all interatomic interactions, ring.
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— FIG. 6. Energy as a function @* for various values oR* in
- i the casev=4, see Fig. 3. The curve correspondingR6=0.78
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followed by an extended region (0.ZR* <0.87) in which

FIG. 4. Upper panel shows the energy per partigleunits of ;=4 provides the lowest energy. Note that there are many
the pair potential's well depjhas a function of reduced radius, for energy minima close to théreduced energy E/(Ne)=
various assumed ring numbers=1, 2, 3, 4, 5, 6, and 8, from left _ 3 5" The global minimum energy structure occursRét
to right. Each value of is derived by choosing the optimized =0.78, with reduced energy 3.62 (the minimum neaR*
lattice constantd,;,), shown in the lower panel. The oddcurves =0.67 has energy 3.61 and that negR* = 0.95 has energy
are dashed and=1, 2, 6, and 8 are labeled. —3.60). At that point, there are two neighbors at reduced

) ) distance 1.10 and four at distance 1.11, both of which are

By such an analysis, we derive the ground state energy,ery close to the pair potential minimum value, ~1.12.
shown in Fig. 5, representing the global lower bound of therpis most cohesive configuration corresponds to a cohesive
ensemble of curves in Fig. 4. This scallop-shell-like funct|0nenergy some 7% higher than the two-dimensional ground
manifests the following plausible behavior. For very smallgiate energy3.39 of the L J potentialcorresponding to a
R*, the lowest solution corresponds to the casel. Near  pexagonal packing[10]. This result implies that if atoms
R*=0.5, the lowest energy shifts to the=2 structure; this  yere to self-assemble on a surface of any shape, the cylin-
is a plausible result because then two atoms may occupy th§ical surface would be stable relative to the planar surface.
same ring without significant hard core repulsion. For in-whjle we have not performed the corresponding calculation
creasingR, the minimum energy and structure undergo agor atoms on a spherical surface, we suspect that the energy
sequence of transitions between different values.ointer- 4 that case would be competitive with the present results
estingly, the sequence is not monotonic: after a very narrow11]. Based on experience found in the case of a Coulomb
region (0.66<R* <0.63) in whichv=3 is optimal, there oc-  jnteraction[7,8], we expect that frustration due to many en-
curs a region (0.68R*<0.73) in whichv=2 is optimal,  ergetically similar structures would be likely to occur in the

spherical case. We note, for completeness, that the reduced
o7 1T T1 cohesive energy in 1D is slightly greater tha1103), while
I ] in 3D the value is quite larges.1), a result of both the higher
coordination possible in 3D and the large contribution of
long range forces.

A structure of the type we are studying will sustain sound
waves with various polarizations. The simplest such wave is
a longitudinal compressional wave, with propagation vector
parallel to the cylinder’s axis. In the long wavelength limit,
the corresponding sound speed for the case of vagsar-
ticles will satisfy

E/(Ne)

] N N T N
0 0.2 0.4 RO/% 0.8 1 Ms2= aZ(

FIG. 5. Energy as a function of radius, obtained by selecting the
minimum energy from the solutions in Fig. 4. The global minimum Here the derivative is evaluated at the ground state configu-
energy for this problem occurs Bt =0.78 (v=4), as indicated by ration for any R. Figure 6 shows corresponding energy
the arrow. curves from which the derivatives in E(R) may be com-
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puted. For the curves shown, the reduced sound side2tle 1
has the values 86, 37, and 91Rit=0.78, 1.05, and 1.25
(the three lowest energy minima in Fig), Bespectively. In
the case of a mass 16 particle (§Hthese values corre-
spond tos~3 km/s, comparable to the bulk speed of sound
of CH,. The very high value is indicative of a very tightly
bound and rigid structure.

IIl. THERMODYNAMICS

There exists a venerable tradition of applying theng)
lattice gas model to describe the condensation of gases. The L J
critical exponents of the liquid-vapor transition are believed
to be exactly determined with this model. As is common in
such applications, we simplify our calculations by assuming
that only nearest neighbors interact and these interactions all
have the same energy-@J). While J might simply be set
equal to the well depth of the pair potential, a more sophis-
ticated model might increase the value bfo incorporate
attractive, longer range interactions in some approximation.
The pre_ceding section’s results for the_energy would su_ggest 0 05 1 15 2
that an increase af/ e by a factor~1.5 is needed to derive kT/J
the ground state’s energy. However, at a density less than
complete filling of sites, the occupation fraction would re-  FIG. 8. Energylower pane) and specific heafupper pansglfor
duce this hypothetical long range correction significantly. Ofthe case of ring number=3, Ns=18 (six rings. The full curve
course, accurate calculatiofreot undertaken hejavould in- corresponds to half filling occupancy € 9/18), the dotted curve to
corporate longer range interactions explicitly in the Hamil-¢=8/18. the dashed one #©=10/18, and the dot-dashed one to

tonian itself. §=15/18.
Our method of study is the explicit evaluation of the par-
tition function, within the canonical ensemble. For the case QN(T)ZE e E(M}/KT 3)

whenN sites are occupied at temperatdrethis function is

Here,k is the Boltzmann’s constant, the sum is over all con-
1 figurations{n;} that yield a total ofN particles(out of Ng
siteg, andE{n;} is the corresponding energy. Each configu-
ration corresponds to a specific choice of occupied sites. Pe-
riodic boundary conditions are employed, so that the right
end sites of a periodic region interact with “neighboring”
left end sites of that region. A typical calculation involves a
configuration determined by the occupancy of the $ites
contained within three unit cells of the lattice. We explore the
accuracy of this procedure by varying the size of the periodic
cell. Because there is no transition in this 1D system, the
finite size effects do not attenuate any divergence in the spe-
cific heat, but they are observable. Checks on the results
come from the known ground state energy and the figh
energy, obtained from a random site occupancy,

E/(NJ)=—

N[

N 0
N3¢ @)

i 3 S S AT M S Here vy is the coordination number and is the occupied
0 0.5 1 L5 2 fraction of sites. Another check comes from the entropy
S(T), which is obtained by integrating the heat capacity,

FIG. 7. Energy(lower panel and specific heaupper panélfor divided by T, from zero to infinity, WheréS:In{N_S!/[N!(NS
the case of ring number=2, No= 16 (eight rings. The full curve ~ —N)!I}. Note thatS/Ng=—61n 6—(1-6)In(1-6), i.e., In 2
corresponds to half filling occupancy € 8/16), the dotted curve to @t 50% occupancy.
#=7/16, the dashed one = 9/16, and the dot-dashed one filo Figures 7—-9 show the energy and specific heat as func-
=13/16. tions of the reduced temperatufé =kT/J for the cases
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FIG. 10. Specific heat for=3, showing the size effect as the
number of sited\g increases. The full curve depicts the case for
Ng=18 (six ring9, the dashed curve correspondsNg= 24 (eight
1k - rings), and the dotted curve thlg;=30 (ten rings. The left panel
shows the case for half occupanithie inset depicts the energy per
particle whereas the right panel corresponds to occupancy below
1/2: #=0.44 (full curve), 0.42(dashed curve 0.43(dotted curve

E/(NJ)

Note that this behavior becomes increasingly evident as the
system size grows, indicating that it is not a finite size arti-
g 1 1 1 fact. To explore this phenomenon, we compute two correla-
: tion functions, defined in the following way. The transverse
correlation function is obtained from the average of the prod-
FIG. 9. Energy(lower panel and specific heat for the case of uct of the occupation numbers of the three sites in the same
ring numbervy=4, N,= 16 (four ring9. The full curve corresponds ring, and the longitudinal correlation function is the average
to half filling occupancy ¢=8/16), the dotted curve t6=7/16,  of the product of the occupation numbers of three sites in
the dashed one t6=9/16, and the dot-dashed onefde 13/16. consecutive rings.
These correlation functions are plotted in Fig. 11 in the

=2, 3, and 4, respectively. We make a number of remark§ase ofv=3, for the same occupations as in Fig. 8. One
about the results. First, the curves are all qualitatively simiObserves drastically different behavior fa=1/2 and 4

exhibits a phase transition. Hence, all of the interesting bel* =0.75, persisting down t@ =0, while the longitudinal
havior is concentrated in the regime near and belbtv ~ correlations remain low and constant for the whole range of
=1. The key qualitative dependence is a concentration, witfemperature. The ground state includes completely filled
increasingy of the thermal “activity” into a progressively fngs (perfect transverse oro)eput the longitudinal order is
narrower region ofT. This trend is plausible because the imperfect, e.g., because the islands have edges=dt/2.

limit of very large is the(triangular lattice 2D limit, which ~ Note that the peak in the specific heat appears at the same

exhibits a genuine phase transition, with critical temperaturdémperature T* ~0.75) for which the transverse correlations
T*~0.91 start to develop, indicating a quasitransition to a more or-
*~0.91.

Size effects are present in our calculations and may also

occur in nature, where nanotubes are finite or may have finit L L
segments that are perfectly ordered. To explore these effectg | 0 =8/18 | 0 =10/18 |
we focus on the case= 3. Figure 10 shows how the ground E

state energyinset in left panel at 6=1/2, depends o, 813 - —
the number of sites in the unit cell, while the highresult = AN T T
remains fixed aE/(NJ)=—23/2, the exact result at high § I ST I T
arising from the 50% site occupancy. The dependendsdon T L

for #=1/2 conforms to the expressi&(T=0)/(—NJ)=3 N

— 12N, derived from the bulk and surface energies of a | 0 =9/18 r Y |
ground state “island” consisting ofN¢/6 isolated rings. 2 T—==—o o ]
Hence, the largest system show & 30) has a ground state - r T
energy differing from the infinite system result by a fraction 1—\_ _
4/30~0.14. The specific heat bump moves to progressively | —-——au o L 9 =15/18 i
higherT asNs increases; it is seen to be converging to a well R R R N N R
defined limit at that point, with a maximum ne@fr =0.89, 0 0.5 1 0 0.5 - 1 L5

as is expected from the limiting behavior described above.

One particularly interesting feature is the presence of a FIG. 11. Transversefull curves and longitudinal (dashed
double maximum in the specific heat at fractional occupacurves correlation functiongdefined in the tejtfor the same oc-
tions # both near, but not equal to, 1(Eig. 10, right panel cupancies as in Fig. 8v&3).
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dered state along the azimuthal direction. 40r

How do we explain the second, low, bump in C foré :
close to 1/2? We attribute it to development of the longitu-
dinal correlation at a lower since the rings are not all com-
plete in this case. The upper panels of Fig. #=@/18 and
10/18 show how the longitudinal correlation arises fbt
below 0.25, i.e., a much lower than where the transverse
order begins, giving rise to the corresponding [dWwump in
Fig. 8. Rings start to form al*~0.75 and this ordering
leads to a longitudinal quasicondensation when these ring:
start to order along thedirection asT is lowered. When the
occupation is considerably larger that 1f2r example, as
shown in the bottom right panel of Fig. 11, fér=15/18), e N — ]
the longitudinal order prevails because almost all the rings 0 0.5 1 1.5
are occupied and the low islands are bigger. R/o

Based on the behavior of these two correlation functions FIG. 12. The ground state energy #le atoms confined to a

we can also explain the absence of two peaks inithe2 cylindrical surface. The full curve shows the result of the variational

and v=4 cases. For half filling, the longitudinal order is c5icyationE,,, by Carraro(Ref.[1]). Also shown are two alterna-
always poor because the system tends to aggregate in gl estimates(Y; and E(), of the total energy obtained from the
island and the peak in the specific heat corresponds to th@assical potential energiV/), and estimated kinetic energfes;,

development of the azimuthal order characteristic of thisss described in the text.
structure. For occupancy much greater than 1/2, the system
tries to condense along thedirection, which coincides with 5 pe |ess than, or equal to, the true kinetic energy'idé.

the formation of a much bigger island and the specific heagnfortunately, we cannot establish such a relation without
peak indicates the appearence of this longitudinal ordetarrying out a full calculation. Instead, we approximiite,,
However, because the energy difference between the trangsjiowing London, leading to a total energy estimate, instead
verse and longitudinally ordered structures is smaller than i 5 genuine bound. Our estimate of the kinetic energy per
the v=3 case, for intermediate cases wheis close to 1/2,  particle includes contributions from both azimuthal and lon-
longitudinal and transverse ordering occur at nearly the samgitydinal motions for atoms within the lattice,
T, resulting in a single peak in the specific heat.
2+ v
IV. QUANTUM EFFECTS R

The preceding discussion deals with the classical latticgigyre 12 shows the results of this calculation, along with
problem, leaving open the question of quantum effects. Iseyeral others. One of these is a variational calculation of the
one were to compute the rms fluctuations of atomic d|splaceground state energl,,, of liquid “He on a cylindrical sur-

. . . %
ments due to zero-point motion, thessentially 1D phonon  face by Carrar§13]. While this latter is just an upper bound
states of this lattice would lead to a divergent result. Hencey, the exact energy, it probably comes within 0.2 K of the
no crystalline state is possible for our lattice, everTat0.  eyact energy. In comparing these curves, we note that both

However, we wish to consider the implication of our re- he energy estimateS,;andE, ,, exhibit a common feature:
sults for the case of a rather extreme quantum problem, thg,ere is a single total energy minimum in the vicinity of
ground state ofHe atoms confined to a cylindrical surface. g« ~0.7 to 0.8. We observe th&t), lies significantly below

. 8. <

In this case, there is no ambiguity about the ground stat&sararg's results for all values & . The large discrepancy

since it is surely a liquid, as in 3D. Our concern here is & _ 15 ) js attributable, in our opinion, primarily to the ne-
guantitative one: what is the binding energy of this ground

tate? W thi i ith timati h glect of the large increase in potential energy above the clas-
states We answer this question with an estimation Mo |attice energyV),. To analyze this, we make a drastic

S|m|I§1r ;O the.t())_ne leseq b%/DLoandOI_‘IHr]nore tflw:;]n hal_f a Centur¥ipproximation: that the motion of the system is totally har-
ago in describing*He in 3D [12]. The goal here is to see onic e 5 phonon description. In that case, the potential

whether the lattice model contains any physics relevant t%nergy increase above the val(é), is equal to the kinetic

4
the “He case. , energy per particle. This leads to a revised estimate of the
One estimate of the total ener@y,; of the system is the energy

following:

E/N (K)

ﬁZ 2

Kest/N = ﬁ

™

a

©6)

E@=(V)o+ 2K 7
EG=(V)o+ Ko ® oo~ (Yot 2es "
As seen in Fig. 12, the variational results lie midway be-
Here(V), is the ground state energy computed in Sec. Il fortweenE(Y), and E{Z, and the minima of these functions lie
a cylindrical lattice. The latter is a lower bound to the trueclose to that of the variational calculations. This comparison
potential energy of the quantum problem. Hence, the totasuggests that our model is getting the physics approximately

Egls)t is a lower bound if the kinetic enerd¥.s; Wwere known  correct. However, one must bear in mind that a more com-
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plete analysis would take into account the relaxation of then simulations of C60 molecules inside lar¢k5,15 nano-
system to incorporate the kinetic energy. This would be theubes. The lowl peak was attributed to breakup of the mol-
analog of allowing the liquid density to vary in searching for ecules’ zigzag structure and the highErpeak to loss of
the ground state, as is conventionally done in variational caltongitudinal ordef14].
culations (and was done by London with his analogous
mode). The result of such an approach would be a reduction
in the density(as occurs for 3D*He and HB) and in the ACKNOWLEDGMENTS
magnitudes of all energies in the system. Such an extended
analysis seems unwarranted in view of the naivetehe
present description and the availability of alternative, moreTh
accurate, computational methods.

Note added in proofA qualitatively similar two-peak be-
havior of C(T) was recently found by Hodak and Girifalco

We are grateful to Carlo Carraro for a helpful discussion.
is research was supported by the Petroleum Research
Fund of the American Chemical Society and by Fundacio
Antorchas.
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